
Università degli Studi di Padova

Dipartimento di Matematica
“Tullio Levi-Civita”
Corso di Laurea Magistrale in Informatica

PIN Inference on a Covered Hand
Scenario: a Computer Vision

Approach

Supervisor
Prof. Mauro Conti
University of Padua, Italy

Co-Supervisors
Dott. Matteo Cardaioli
University of Padua, Italy
GFT Italy, Italy
Dott. Stefano Cecconello
University of Padua, Italy

External Reviewer
Prof. Mark Manulis
University of Surrey, United Kingdom

Author
Eugen Saraci

1171697

September 2020

Eugen Saraci: PIN Inference on a Covered Hand Scenario: a Computer Vision

Approach, Tesi di laurea magistrale, © Settembre 2020.

Sommario

Coprire la propria mano quando si digita il proprio codice PIN sul tastierino di

un ATM è risaputo essere una buona tecnica per evitare truffe e furti di PIN; ciò

infatti non permette al malintenzionato, o a un qualsiasi passante, di carpire le cifre

che compongono il nostro codice segreto. Sebbene la nostra carta possa comunque

essere clonata durante l’attacco, il malintenzionato non potrà effettuare alcuna

operazione rilevante senza conoscere il PIN della stessa. La principale tecnica usata

dai truffatori per rubare i PIN consiste nel nascondere, all’interno dell’ATM o in

alcune sue componenti, una micro-camera diretta verso il tastierino, in modo da

registrare tutto ciò che venga digitato dalle vittime. Tuttavia, se le vittime coprono

attentamente la loro mano durante la digitazione, il malintenzionato non sarà in

grado di capire quale sia il PIN digitato, dato che il tastierino non risulterebbe

visibile alla micro-camera. In queste condizioni, per un essere umano risulta quasi

impossibile riuscire a ricostruire il PIN digitato, tuttavia, utilizzando tecniche di

machine learning, l’esito non è più scontato. In questa tesi, presentiamo un attacco

innovativo che sfrutta la potenza delle reti neurali convoluzionali (CNN) per risalire

al PIN digitato guardando solamente i movimenti della mano coperta, con una

percentuale di successo pari a 1 PIN su 3, in uno scenario user-independent, in soli

3 tentativi.

Abstract

Covering your hand while entering a PIN on an Automated Teller Machine (ATM)

is known to be good practice against card skimming attacks, as it prevents the

attacker, or any onlooker, from learning the secret PIN, which is required to perform

any operation on the ATM. The most common way the attackers steal PINs is by

carefully concealing a small camera into the ATM components to record anything

that is being typed on the keypad; the attacker can later watch the recorded footage

to retrieve all the stolen PINs. However, if the victims carefully cover their hand

while typing, the video footage will not be of any help to the attacker, as there

would be no clear sight of the keypad. Therefore, recovering a PIN from this kind

of footage would be close to impossible for the human attacker, however, if machine

learning is involved in the process, the outcome is different. In this work, we present

a novel attack that exploits the power of Convolutional Neural Networks (CNNs)

to retrieve the victims’ PIN just by looking at the movements of their covered hand,

with a success rate of 1 PIN out of 3, in a user-independent scenario, when given

only 3 attempts.

Contents

1 Introduction 1

1.1 Card Skimming Attacks . 2

2 Related Work 7

2.1 Side-Channel Attacks . 7

2.2 PIN and PIN pads attacks. 8

3 Background Knowledge 11

3.1 CNN - Convolutional Neural Networks 11

3.1.1 Typical CNN Architecture 15

4 System Model 17

4.1 System Model . 17

5 Data Collection 21

5.1 Experimental Setup . 21

5.1.1 ATM Replica and Keypad 21

5.1.2 Webcams . 22

5.2 Experiment Process . 23

5.2.1 Error Handling . 24

5.3 Data Logging . 25

5.3.1 Data Cleaning . 26

5.3.2 Preparing the dataset . 27

6 Models and Experiments 31

6.1 Base model . 31

vii

viii CONTENTS

6.2 Dataset Partitioning . 32

6.3 Preprocessing . 35

6.4 Data Augmentation . 35

6.5 Frames per sample . 37

6.6 Timing information . 40

6.7 Configuration and Environment . 42

7 Evaluation 45

7.1 Choosing the model . 45

7.2 Evaluation on single keys . 46

7.3 Evaluation on PINs . 47

8 Conclusions and Future Work 51

8.1 Overall Summary . 51

8.2 Future Work . 52

Bibliography 53

List of Figures

1.1 Plastic shield set around the keypad to prevent onlookers or hidden

cameras from learning the PINs typed by customers. This image is

taken from [32]. 2

1.2 The figure shows a fake card tray with a skimmer inside it (the

electronic chip). When the fake card tray is put in place, it is not

easy to spot unless the victim is very careful to details. This image

is taken from [15]. 3

1.3 The red circle highlights a very small hole from which a pinhole

camera was recording the keypad. This image is taken from [15]. . . 4

1.4 The fake keypad on top of the real one logs all the keypresses. This

image is taken from [15]. 4

2.1 The thermal camera detects which buttons have been pressed. . . . 10

2.2 The left image shows clearly how the attacker can record the ATM

screen while the victim is typing. On the right, we see the view from

a bystander. 10

3.1 Example of a convolution between a 3 × 4 input image and a 2 × 2

filter. Each square in the output area represents a pixel of the output

image. This image is taken from [13]. 12

3.2 Zero-padding with p = 1 applied to a 6 × 6 input picture. When the

3 × 3 kernel is applied to the input image, the output image does not

shrink, instead it keeps the same size. This image is taken from [8]. 13

ix

x LIST OF FIGURES

3.3 The image shows how the connections (i.e., weights) required for a

fully connected layer (bottom) are many more than those required

by a convolutional layer (top). The image is showing the connection

between the inputs xi and the outputs si; the black arrows represent

the weights. Take, for example, the output unit s3, we can see that

in a convolution operation, s3 only depends on the values of x2,3,4,

while, in a dense matrix multiplication, it depends on all the inputs

x1,...,5. This image is taken from [13]. 14

3.4 The image shows how the weights (arrows) used in a convolutional

layer (top) are shared (black arrows) among different input units,

while, in a fully connected layer (bottom), weights are used exactly

once. 15

3.5 Example of the application of a 2 × 2 max pooling filter to a 3 × 3

input. This image is taken from [24]. 16

3.6 Typical CNN architecture that employs convolutional layers, pooling

layers, and fully connected layers. Used in [18]. 16

4.1 Example of a pinhole camera. The camera is usually disassembled

to fit in tighter spaces. 18

4.2 The attack shown step-by-step. The data collection process does not

necessarily need to happen before the attacker steals the victim’s

PIN, however, it is a required step of the attack. 19

5.1 The ATM replica and a closeup of the keypad. 22

5.2 Central webcam view. 23

5.3 Lateral webcams view. 24

5.4 Participants covering their hands while typing. 25

5.5 Amount of samples for each key. 28

6.1 Graphical summary of the base model. 33

6.2 Amount of samples for each set and for each key with the user-

independent partitioning. 34

6.3 Effects of data augmentation. The original image is the one in the

top-left corner, all the others are augmented versions of it. 36

6.4 Distributions of the number of frames between the keyup event of the

previous keypress and the keydown event of the following keypress

with respect to the target keypress (after rejecting outliers). E.g.,

given the trigraph “345” where “4” is the target keypress, we count

the number of frames between the keyup event of the key “3” and

the keydown event of the key “5”. 38

6.5 The neighborhood of size 5 of the target keypress is highlighted in

green. White frames are too far away from the target frame and

are therefore discarded. Yellow frames mark the keyup event of the

previous key (frame number 3) and the down event of the following

key (frame number 20). 39

6.6 Keeping frames that are equally spaced throughout the sequence.

Green frames are kept, white are discarded. 40

6.7 Selected frames (green) and padded frames (black) of the considered

video sequence between subsequent keypresses. 40

6.8 Difference in validation accuracy between the subsampling approach

and the neighborhood approach (both with 11 frames in total). . . . 41

6.9 Difference in validation accuracy when including the timing informa-

tion as input. 42

7.1 Validation and training performance comparison throughout the

training epochs. The vertical dashed gray line shows the epoch on

which the model performed best (i.e., lowest validation loss). . . . 46

7.2 Normalized confusion matrix on the test set. 48

7.3 Distribution of the predictions for key “1”; most of the prediction

errors are made on buttons that are physically close to the target

button. 48

7.4 CDF showing the percentage of the PINs cracked during the testing

phase; the model can to recover 36% of PINs in only 3 attempts. . . 50

xi

List of Tables

6.1 Detailed amount of samples for each key with user-independent

partitioning. 34

7.1 Classification report produced by the Scikit-learn library [23]. These

results refer to the test set and show different metrics for each class.

The classes correspond to the pressed buttons. 47

Listings

5.1 Keys, events, and timestamps recored by the keylogger and saved in

first logfile for the central webcam. 26

5.2 Frame numbers of the events reported in Listing 5.1, saved in the

second logfile for the central webcam. 26

5.3 PIN representation in the new dataset. 28

xii

CHAPTER 1
Introduction

Personal Identification Numbers (or PINs) are still widely used as authentication

schemes in many scenarios, such as ATMs, phone lock screens, or even door locks.

Unfortunately, the action of entering a PIN is generally vulnerable to shoulder-

surfing attacks [30]. While there are some countermeasures proposed in the literature

to prevent this kind of attack [16, 19], a little effort is done to translate these defense

mechanisms into practice. Some ATMs make use of a plastic shield around the

keypad (Figure 1.1) to prevent precisely shoulder-surfing or pinhole camera attacks,

moreover, for the same reason, customers are often taught to cover their hand while

entering the PIN. However, while covering the hand will prevent the digits from

being leaked, one might still try to analyze the hand movements made by the victim

and infer which buttons are being pressed. Hand movements, in fact, have been

shown to reveal critical information, especially when typing on a keyboard [4] or

smartphone [25].

In the last decade, side-channel attacks have seen a surge in popularity thanks

to machine learning techniques and tools being easy to use and affordable. Some

of these attacks involve very precise video [2, 3] and audio [7, 9] analysis, which

can only be performed by machine learning algorithms. In this work we analyze

a scenario in which the attacker has placed a microcamera pointed at the keypad

of an ATM, (this is commonly done for card skimming attacks); the microcamera

films the victims while they enter their PIN on the keypad, however, we also assume

that the victims adopt the aforementioned technique of covering their hand while

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Plastic shield set around the keypad to prevent onlookers or hidden cameras

from learning the PINs typed by customers. This image is taken from [32].

typing, thus preventing the microcamera from having a clear line of sight to the

buttons of the keypad. The attacker can still analyze the recorded video, possibly

remotely, in order to extract as much information as possible.

1.1 Card Skimming Attacks

Card-skimming is a category of attacks whose aim is to steal credit/debit card

information from the victims. In this work, however, we only consider skimming

attacks that target ATMs. These attacks usually required two different steps: (1)

stealing the card information, and (2) stealing the PIN. The attacker accomplishes

the first step by using a skimmer, a small device hidden in the card tray that reads

the data of the cards as the victim inserts it. Sometime attackers will build a fake

card tray almost indistinguishable from the real one and put it on top of the real

card tray. In this way, it is much easier for the attacker to hide a skimmer inside

the fake card reader (Figure 1.2).

The attacker generally accomplishes the second step in two possible ways, either

by hiding a small pinhole camera in the ATM (Figure 1.3) or by putting a fake

keypad on top of the real one (Figure 1.4). The pinhole camera points at the

keypad and it records the victims’ hand while entering the PIN, while the keypad

overlay simply saves all keypresses. The attack is successful only if both steps reach

1.1. CARD SKIMMING ATTACKS 3

Figure 1.2: The figure shows a fake card tray with a skimmer inside it (the electronic

chip). When the fake card tray is put in place, it is not easy to spot unless

the victim is very careful to details. This image is taken from [15].

their objectives. The only real practical countermeasure against the keypad and

card tray overlay is to pay attention to oddities in those components, while for the

pinhole camera it is usually suggested to cover the keypad while typing (either with

the other hand or the wallet).

Contributions This work aims at testing whether the movements made by the

typing hand while being covered leak enough information for a deep learning model

to understand which key is being pressed. To this end, we build an ATM replica to

collect data and asked 43 volunteers to take part in our experiments. We asked

each volunteer to type 100 randomly generated 5-digit PINs onto our fake ATM

while the keypad was being recorded by a webcam. Participants were told to cover

their typing hand while entering the PINs so that the webcam could not have a

clear vision of the buttons being pressed. After cleaning the dataset, we trained a

deep learning model with 70% of the data collected, being careful to partition the

data in such a way that the model would never see, during training, some of the

users. The idea is that, in this way, we can test the performance of the model in a

user-independent context.

The final evaluation was performed on a total of 400 PINs typed by 4 users. The

model managed to retrieve 22% of the PINs on the first attempt, and it reached

4 CHAPTER 1. INTRODUCTION

Figure 1.3: The red circle highlights a very small hole from which a pinhole camera was

recording the keypad. This image is taken from [15].

Figure 1.4: The fake keypad on top of the real one logs all the keypresses. This image

is taken from [15].

1.1. CARD SKIMMING ATTACKS 5

36% accuracy when given 3 attempts. After 20 attempts the model reached 50%

accuracy, however, we deem the TOP-3 accuracy to be the most relevant metric to

the attacker in this context, as ATMs only allow 3 PIN attempts before locking or

disabling the card.

Organization The remainder of this work is organized as follows:

• Chapter 2 presents some of the related work, both from the security and deep

learning areas;

• Chapter 3 introduces some preliminary notions about the attack and the main

aspects of deep learning used throughout this work;

• Chapter 4 formalizes the attacker model;

• Chapter 5 explains the whole data collection process.

• Chapter 6 presents the models developed for this attack and the different

approaches adopted for them;

• Chapter 7 shows the evaluation process and results of the models;

• Chapter 8 contains some final remarks about this work and proposes some

extensions for this attack.

CHAPTER 2
Related Work

This chapter presents some of the related work dividing them in two categories. First

we report some general side-channel attacks, then we cover only PIN and PIN pads

attacks.

2.1 Side-Channel Attacks

Side-channel attacks are those attacks that specifically target the information

gained by the implementation of a system rather than its logic. Most of the

time, these attacks exploit channels like sound, timing, energy consumption, and

electromagnetic emanations to learn the secrets of the system in use. The main

cause behind the feasibility of side-channel attacks is the lack of attention to the

details that do not directly concern the system, i.e., while much effort may be

put into the verifying the logic and the cryptographic security of an algorithm,

little to no effort is allotted to prevent attacks such as, e.g., timing attacks on the

instructions executed by the algorithm. In [14], for example, the authors managed to

crack RSA keys by carefully timing the operations performed by the key-generating

algorithm. Another example of a timing attack is reported in [27], where the authors

measured the timing between keystrokes in interactive SSH sessions, in an attempt

to retrieve the typed passwords. In [1] the authors exploit the sound made a printer

when printing a text document; without a priori knowledge on the context of the

document, the authors managed to retrieve more than 70% of the text contained

in it, just by analyzing the audio during the printing process. Another example

7

8 CHAPTER 2. RELATED WORK

of an acoustic attack comes from [9], where the authors showed that they were

able to infer which keys were being pressed by the victim, just by having a Skype

call with them and recording the audio of the keystrokes. Notice that also human

behavior can be defined as a side-channel of a system, especially if the analyzed

behavior is a direct result of the system’s requirements. For example, in [4], the

authors analyze the hand movements of people typing on a keyboard and, by using

basic computer vision techniques, they try to infer reconstruct the text being typed.

In [26], the authors again analyze the hand motion during the PIN-entry process

on smartphones. They showed that 50% of the PINs could be retrieved in just 1

attempt even when the keyboard is not visible. In [26] they also analyze the ATM

scenario, which is substantially different from our approach, as, in their model, the

PIN pad and the fingers of the victim are partially visible to the camera. In [29]

the authors present a side-channel attack on tablets, which consists of analyzing

the backside movements of the tablet itself to infer what is being typed by the

victim. To do so, they select some peculiar features of the backside of the tablets

(e.g. logos, side-buttons) and analyze their movement throughout the frames, to

understand which area of the virtual keyboard is being pressed. Another interesting

side-channel attack is reported in [10], where, by analyzing the encrypted traffic of

some of the most common Android applications (e.g., Facebook, Twitter, Gmail),

the authors are able to understand which actions are performed by the victims

with a 99% accuracy. While this attack does not reveal the content of a specific

action, it allows the attacker to know whether, e.g., the victim is sending an e-mail

or posting a message on Facebook wall, which, through a correlation attack, might

lead to the full de-anonymization of an online profile.

2.2 PIN and PIN pads attacks.

In the following section, we describe some of the most interesting side-channel

attacks on PINs and PIN pads we found in the literature.

The first attack is performed on the PIN pad and it exploits the heat that is

transferred from the hand to the keypad when the victim enters her PIN [22]. In

2.2. PIN AND PIN PADS ATTACKS. 9

this attack, as soon as the victim has finished entering her PIN, the attacker points

a thermal camera to the keypad; the thermal image not only shows which keys

have been pressed but it also highlights the order in which the victim pressed them

(Figure 2.1). The main advantage of this attack is that it does not require the

attacker to do anything while the victim is typing her PIN, even though the attacker

must act quickly (i.e., within seconds) for a higher success rate, as the heat on the

keypad rapidly fades away (between 1 and 2 minutes). Another drawback of the

attack is that its effectiveness depends on the material of the keypad, e.g., metal

PIN pads completely nullify the attack because of their high thermal conductivity.

The second attack is a timing attack against PINs. In the scenario presented

in [2], the attacker record the screen of an AMT while the victim is entering her

PIN. When analyzing the recorded video, the attacker exploits the PIN masking

symbols appearing on the ATM screen to extract precise timing information about

the keystrokes. This allows the attacker to use a machine learning model to

infer, starting from the inter-keystroke timing, which buttons (i.e. two consecutive

buttons) were most likely typed by the victim. In Figure 2.2, we see how the attack

would be performed in a real scenario.

The third and last attack is a timing/acoustic attack on PIN pads. In [7], the

authors used the artificial sound made by the ATM whenever a button is pressed.

The sound produced by ATM must be constant independently of which button is

being pressed (to comply with the standard ISO 9564-1). This means one single

“beep” will not help the attacker, however, the sound gives enough information to

extract a timestamp of the keys being pressed, which allows the attacker to perform

the timing attack reported also in [2].

10 CHAPTER 2. RELATED WORK

(a) The plastic keypad used

throughout the experiments in

[22].

(b) Thermal camera view of the keypad

after a victim has typed her PIN.

The original PIN was 1485, which is

also suggested by the heat localized

in those buttons. The colored rectan-

gles around the keys are just used to

highlight the position of the buttons.

This image is taken from [22].

Figure 2.1: The thermal camera detects which buttons have been pressed.

Figure 2.2: The left image shows clearly how the attacker can record the ATM screen

while the victim is typing. On the right, we see the view from a bystander.

CHAPTER 3
Background Knowledge

In this chapter, we introduce some of the main features regarding Convolutional Neural

Networks. We mainly focus on those features that we manipulated the most.

3.1 CNN - Convolutional Neural Networks

Convolutional neural networks (CNNs) are a kind of neural network mainly employed

for applications in visual imagery. The main difference between CNN and traditional

Multi-Layer Perceptrons (MLPs) is that CNNs employ at least one convolutional

layer. In a convolutional layer, the main operation between inputs and weights is

a linear operation named convolution, while in a fully connected layer the main

operation is the matrix multiplication. The weights of the convolutional layer are

called filters (or kernels, or feature detectors) and they all must have the same

shape of the input. So, if the input is a 32 × 32 grayscale image, then the filters

must also be two-dimensional, but no constraints are posed on their size (which

usually is 3 × 3).

The number of filters of a convolutional layer constitutes a hyper-parameter

of the model, therefore there is no clear way to decide how many filters should

be instantiated in a single convolutional layer. Each filter is applied, through the

convolution operation, to the input image as many times as it fits, and the result

of this operation is a representation of the original image (possibly with a smaller

size). For example, Figure 3 shows the result of a convolution between a 3 × 4 input

image and a 2 × 2 filter. The filter is applied to the image starting from the top

11

12 CHAPTER 3. BACKGROUND KNOWLEDGE

Figure 3.1: Example of a convolution between a 3 × 4 input image and a 2 × 2 filter.

Each square in the output area represents a pixel of the output image. This

image is taken from [13].

left corner to the bottom right, shifting each time by 1 pixel. The final result is a

2 × 3 image whose pixel values are the linear combination of the inputs.

Notice that in this basic example, the final image is smaller in size than the

starting one and it will keep shrinking if more convolutional layers follow. To

prevent the image from shrinking too much, we might make use of a technique

called zero-padding. With zero-padding, before each convolutional layer, each side

of the input image is enwidened with p columns and rows of black pixels (i.e.,

pixels with value 0), so that the resulting image does not suffer too much the

dimensionality reduction. Notice, however, that p, the size of the padding, must be

regulated based on the filter size, as both these elements determine the final output

size. If the final image has the same size as the input image, then we call this a

same convolution (Figure 3.2).

The final component that influences the size of the output image is the stride.

The stride is the number of pixels in the step size of the filter, i.e., how much (in

3.1. CNN - CONVOLUTIONAL NEURAL NETWORKS 13

Figure 3.2: Zero-padding with p = 1 applied to a 6 × 6 input picture. When the 3 × 3

kernel is applied to the input image, the output image does not shrink,

instead it keeps the same size. This image is taken from [8].

pixels) the filter shifts to the right (or down) with respect to the image after a

convolution. The formula to compute the size of the output image is the following:

⌊︄
m + 2p − f

s
+ 1

⌋︄
×

⌊︄
n + 2p − f

s
+ 1

⌋︄

were m and n are the height and width of the input image; p is the size of the

padding; f is the size of one side of the filter (we are assuming that the filter is

squared), and s is the size of the stride. If we take the parameters from Figure 3.1

and apply those to the formula, we have that m = 3, n = 4, p = 0, f = 2, s = 1

which results in:

⌊︃3 + 2 ∗ 0 − 2
1 + 1

⌋︃
×

⌊︃4 + 2 ∗ 0 − 2
1 + 1

⌋︃
= 2 × 3.

The main advantage of a convolutional network with respect to the traditional

Multi-Layer Perceptron is efficiency. As stated before, in fully connected layers, the

main operation is the matrix multiplication between the input and the weights of

the hidden layers. If we have a 128 × 128 grayscale image and a fully connected

layer of 100 units, we need to train (128 ∗ 128 + 1) ∗ 100 = 1, 638, 5001 weights just

on the first layer. With a convolutional layer, we can use 32 filters of size 3 × 3 and

still get fewer weights to train (i.e., (3 ∗ 3 + 1) ∗ 32 = 3202). This happens because

of two characteristics of the convolutional layers: sparse connectivity and parameter
1The +1 is needed to account for the bias of each hidden unit.
2The +1 is needed to account for the bias of each filter.

14 CHAPTER 3. BACKGROUND KNOWLEDGE

Figure 3.3: The image shows how the connections (i.e., weights) required for a fully

connected layer (bottom) are many more than those required by a convolu-

tional layer (top). The image is showing the connection between the inputs

xi and the outputs si; the black arrows represent the weights. Take, for

example, the output unit s3, we can see that in a convolution operation, s3

only depends on the values of x2,3,4, while, in a dense matrix multiplication,

it depends on all the inputs x1,...,5. This image is taken from [13].

sharing.

Sparse Connectivity Sparse connectivity refers to the fact that any output unit

of the convolutional layer only depends on a subset of units of the input layer; this

is not true in the case of fully connected layers, where, as the name suggests, each

output units is dependent on all input units. Figure 3.3 shows an example of this.

Parameter Sharing Parameter sharing (or tied weights) refers to the fact that

when computing the output of a convolutional layer, the weights of a filter are

reused multiple times as it shits across the input image. In fully connected layers, a

single weight is only used once throughout all the computation of the output. This

peculiar feature of the convolutional layers implies that the weights of the filters do

3.1. CNN - CONVOLUTIONAL NEURAL NETWORKS 15

Figure 3.4: The image shows how the weights (arrows) used in a convolutional layer

(top) are shared (black arrows) among different input units, while, in a fully

connected layer (bottom), weights are used exactly once.

not change based on where they are applied to the image; i.e., the weight applied

to one input is also applied to other input units elsewhere in the image. This works

well with visual imagery, as it implies that a filter that detects a particular feature

(e.g., vertical edges) needs only to be learned once, and it will be independent

of where it is applied to the input image (this property is called equivariance to

translation). Figure 3.4 shows an example.

3.1.1 Typical CNN Architecture

Convolutional neural networks, as stated before, employ convolutional layers as

their main component, however, it is not rare to find fully connected layers too in

other parts of the network. Fully connected layers are usually positioned at the end

of the network, where all the feature extracted by the filters get flattened into a 1D

array and then provided to such layer. Figure 3.6 shows an example of a typical

CNN architecture.

Another important type of layer used in convolutional networks is the so called

Pooling Layer. The pooling layer is usually inserted after one or multiple consecutive

convolutional layers; its main task is to reduce the of parameters of the network by

shrinking the image. To do so, the pooling layer uses one single filter (usually of

16 CHAPTER 3. BACKGROUND KNOWLEDGE

Figure 3.5: Example of the application of a 2 × 2 max pooling filter to a 3 × 3 input.

This image is taken from [24].

Figure 3.6: Typical CNN architecture that employs convolutional layers, pooling layers,

and fully connected layers. Used in [18].

size 2 × 2) to scan the input image and produce at each step the output value which

is obtained either by taking the maximum (max pooling, Figure 3.5), the average

(average pooling) or the L2-norm (L2-norm pooling) among the input values (if

the pooling filter has size 2 × 2, then the number of inputs is 4). Notice how even

though a filter-like structure is used, the pooling filter does not have any trainable

weight, in fact, the designer can only choose what kind of function to use when

applying the pooling filter. Some authors think that the pooling layers only add

to the complexity of the architecture without providing a real benefit from the

functionality standpoint; in [28], the authors argue that the same effect produced

by the pooling layers can be obtained by carefully setting the stride parameter on

the convolutional layers.

CHAPTER 4
System Model

In this chapter, we formalize the attack scenario and the attacker himself. In this way,

it should be clear what conditions are necessary for the attack to take place.

4.1 System Model

The attack is performed when a victim interacts with the keypad of an unsafe ATM

and types her PIN in it. The ATM is considered to be unsafe when the attacker

places a hidden webcam on hit to spy on the victim’s actions. The attacker aims at

learning the victim’s PIN.

We make no assumptions about the type of webcam used by the attacker, but

we assume that it can easily be hidden in an ATM and that it is the only way the

attacker can manipulate the ATM. Figure 4.1 shows how small these cameras can

get, additionally, if disassembled, the components can be organized to fit in very

tight places.

We assume that the victim has no way to detect that an ATM is unsafe, but she

still adopts basic countermeasures against card-skimming attacks, such as covering

her hand while typing.

The attacker does not need to be there when the victim types her PIN, as he

can freely have access to the recorded video of the webcam, either remotely, or at a

different time. The attacker is able to retrieve the timestamps in which the victim

has typed the single keys on the keypad, and he can do so by listening at the audio

of the video recording. There are two different types of sound clues that can be

17

18 CHAPTER 4. SYSTEM MODEL

Figure 4.1: Example of a pinhole camera. The camera is usually disassembled to fit in

tighter spaces.

exploited by the attacker: the first one is the beep sound made by the keypad when

a key is pressed1; the second one is the sound of the physical button of the keypad

being pressed. External noise does not prevent the attacker from extracting they

keypresses, as the webcam is still very close to the keypad, therefore the sound can

still be identified in the audio track.

If for any reason, the attacker has no way to retrieve the timestamps from the

recorded audio (or if there is no audio at all), the attacker could place the camera

in such a way that both the keypad and the screen of the ATM are visible: this

allows him to extract the timing of the keypresses by looking at the PIN masking

symbols appearing on the screen [3]. Common masking symbols are usually dots

(•) and asterisks (∗).

Figure 4.2 shows the steps needed for the attack to occur.

1Not all keypads make this sound.

4.1. SYSTEM MODEL 19

The attacker retrieves
a keypad similar to

the one in the target
ATM.

The attacker starts
collecting data by
himself on an ATM

replica he built.

The attacker trains
the model with the

collected data.

The attacker places a
hidden camera on the

target ATM.
The victim types her
PIN on the keypad of

the target ATM.

The attacker retrieves
the recorded video
(possibly remotely).

The attacker uses the
audio track to identify
the frames in which a
button of the PIN is
being pressed and

extracts them.

The attacker feeds
the extracted data to

the trained model.

The attacker tries the
TOP-3 predictions

given by the model.

Figure 4.2: The attack shown step-by-step. The data collection process does not

necessarily need to happen before the attacker steals the victim’s PIN,

however, it is a required step of the attack.

CHAPTER 5
Data Collection

In this chapter, we present the main aspects of the experimental setup and how the

data collection was performed. In the last two sections, we describe the cleaning steps

required to produce the final dataset used for the experiments. The data collection was

performed inside one of the seminar rooms of the Department of Mathematics "Tullio

Levi-Civita" at the University of Padua, during the first two weeks of July 2020.

5.1 Experimental Setup

The experiment setup is aimed at replicating the interaction between users and real

ATMs as closely as possible, and to do so we try to preserve the same proportions

(e.g., height from ground) found in publicly available ATMs. The most relevant

aspects of our replica are therefore the position and appearance of the keypad,

while the looks of the replica as a whole are not important in this context. The

objective of the data collection process is to create a dataset of images in which a

button of the keypad is begin pressed.

5.1.1 ATM Replica and Keypad

The ATM replica is simply a wooden frame with a monitor and a keypad in it. The

wooden frame has a width of 60 cm, a height of 64 cm, and a depth of 40 cm [5]; at

15 cm of height from the frame’s base, we inserted a wooden shelf on which we later

positioned the keypad and the monitor. On the monitor, we display the randomly

21

22 CHAPTER 5. DATA COLLECTION

(a) ATM replica. (b) Keypad closeup. This image is taken

from [21].

Figure 5.1: The ATM replica and a closeup of the keypad.

generated PIN and the text box on which the participant has to type it in. The

keypad is connected to a PC using a USB cable, and it behaves exactly like a USB

keyboard, which makes it easier to log the keys being pressed. The participants are

instructed to only use the numeric keys and the enter button to submit the PIN.

Figure 5.1a shows a closeup of the ATM replica, while Figure 5.1b shows a closeup

on the keypad.

To keep the data collection as consistent as possible throughout the days, during

the experiments, all of the blinds inside the room were closed, while all of the

lights were turned on. The ATM replica was placed against the wall, and it was

heavy enough to prevent any accidental movement by the participants during the

experiments. In the unlikely case of the replica being moved in-between experiments,

the images collected by the webcams would not be affected by it, as the webcams

were solidly attached to the frame.

5.1.2 Webcams

To record the typing process, we set up three Logitech C920 HD Pro webcams [20].

The first one was positioned centrally, above the keypad, while the other two were

set respectively in the top-left and top-right corner of the wooden frame; all three

cameras were pointing at the keypad. To firmly attach the webcams to the frame,

5.2. EXPERIMENT PROCESS 23

Figure 5.2: Central webcam view.

we used three clamps.

The initial idea was to have three different points of view (Figures 5.2, 5.3) so

that we could evaluate which webcam, or a combination thereof, performed best for

this attack scenario. However, as of this writing, only the central webcam has been

tested thoroughly, while the top-left and top-right cameras have been employed

only for some preliminary experiments, which is why the attack itself only involves

one camera.

5.2 Experiment Process

Because of COVID-19 regulations, only 3 people were allowed to be in the testing

room at the same time, but to avoid any kind of issues, we limited that number to

2: I and whichever candidate was scheduled for that time slot. Face masks were

(and still are) mandatory inside the department building, additionally, every one

was asked to use the hand sanitizer gel we provided before and after typing on the

keypad; the keypad itself was also cleaned and disinfected after each experiment.

Moreover, for the same reasons, we could only look for participants among the

university employees, which heavily limited the amount of data we could collect

24 CHAPTER 5. DATA COLLECTION

(a) View from the top-left webcam. (b) View from the top-right webcam.

Figure 5.3: Lateral webcams view.

during those days. Eventually, we managed to find 43 people who agreed to take

part in the experiment.

Every participant was asked to type 100 randomly generated 5-digits PINs, and

to make it easier for them, we allowed them to take a short break after each session

of 25 PINs. We also required the participants to submit each PIN by pressing

the enter key, which would allow them to skip to the next randomly generated

PIN; on average, for the whole process, participants would take between 11 and 14

minutes to type all 100 PINs, including the short breaks, depending on how fast

they would type. All participants were also instructed to carefully cover their hand

while typing, which is a common technique used against shoulder surfing attacks

and maliciously placed micro-cameras. Some participants were not familiar with

this typing technique, but after being shown how it was done, they all learned

quickly how to replicate it. Figure 5.4 shows the effectiveness of covering the typing

hand.

5.2.1 Error Handling

The chosen error handling approach was to allow participants to make mistakes

while typing, i.e., no error message was shown on screen if the submitted PIN did

5.3. DATA LOGGING 25

(a) View from the top-left

webcam.

(b) View from the central

webcam.

(c) View from the top-right

webcam.

Figure 5.4: Participants covering their hands while typing.

not match the PIN on the screen. Although this might sound counterproductive,

we argue that it is not: in this context, what we really care about is the position of

the hands in the exact moment a button is being pressed; it does not matter if the

pressed button is correct with respect to the displayed PIN, as long as we know the

actual button that has been pressed. In fact, the length of the PIN itself was not

enforced by the software, this means that, possibly, some participants may have

inadvertently submitted PINs with more or less than 5 digits.

5.3 Data Logging

To log all the keypresses coming from the keypad, a keylogger was installed on the

control machine: when a new experiment started, all three cameras start recording,

and, at the same time, the keylogger starts saving all the keypresses. After 25 PINs,

the webcams and the keylogger save all the collected data to disk. The webcams

save one video recording1 each, while the keylogger saves six different files, two for

each camera. A part of the first logfile is shown in Listing 5.1: the first value of

each line represents the label of the key being pressed; the second value can either

be d or u, and it represents respectively the KeyDown or the KeyUp event for that

key; the last value shows (in seconds) when the event occurred with respect to the

1At 30 fps, in 720p.

26 CHAPTER 5. DATA COLLECTION

beginning of the recording (slightly different for each camera). Part of the second

file is shown in Listing 5.2: in this case, there is only one value, which is the frame

number (of the video) on which the event occurred. This means that the event

listed on the i-th line of the first logfile occurred on the frame number found on the

i-th line of the second logfile.

1 key , event , timestamp

2 5, d, 11.057425

3 5, u, 11.097378

4 0, d, 11.297442

5 0, u, 11.345712

6 enter , d, 11.665385

7 enter , u, 11.713443

8 6, d, 14.225381

9 6, u, 14.265386

Listing 5.1: Keys, events, and timestamps recored by the keylogger and saved in first

logfile for the central webcam.

1 frame_no

2 337

3 338

4 344

5 346

6 355

7 357

8 432

9 433

Listing 5.2: Frame numbers of the events reported in Listing 5.1, saved in the second

logfile for the central webcam.

5.3.1 Data Cleaning

Unfortunately, of the 43 participants, 3 were left-handed; the final decision was

to remove them from our dataset, as we deemed the amount of data not to be

enough for the task. Keeping them in would also mean that the dataset would be

heavily unbalanced in favor of the right-handed people, an undesirable property

5.3. DATA LOGGING 27

that may skew the evaluation results. Nonetheless, we claim that if we were to

have a left-handed-only dataset with the same amount of samples as the “right-

handed-only” dataset, the results showed in Chapter 7 could easily be achieved

by the same models presented in Chapter 6, as there is no substantial difference

between the two tasks.

5.3.2 Preparing the dataset

As we were not satisfied with the structure and content of the two logfiles, we

decided to write a Python script to merge them and add some additional data to

the rows. Listing 5.3 shows how a whole PIN is represented in the “new” CSV

dataset (header row is included for clarity). One immediate difference that can

be noticed is that there is no more a distinction between KeyUp rows and KeyDown

rows, additionally, the enter key has been ignored. Here follows a description of

the new fields:

• target: the frame number of the KeyDown event of the target key (i.e., the

key being pressed);

• start: the frame number of the KeyUp event of the previous key;

• end: the frame number of the KeyDown event of the following key;

• t1: time passed (in milliseconds) between frame start and frame target;

• t2: time passed (in milliseconds) between frames target and frame end;

• case: edge case flag; can assume values 0, 1, and 2:

– 0 means that there is no edge case;

– 1 means that the target key is the first digit of a PIN, which also implies

that there is no previous key, and therefore start must be equal to

target;

– 2 means that the target key is the last digit of a PIN, which also implies

that there is no following key, and therefore start must be equal to

target;

28 CHAPTER 5. DATA COLLECTION

• sid: unique identifier of the session (i.e., block of 25 PINs);

• uid: unique identifier of the user (i.e., full name of the participant);

• key: the key being pressed.

1 target , start , end , t1 , t2 , case , sid , uid , key

2 750, 750, 765, 0.00 , 0.50 , 1, 48a7b , Eugen , 0

3 765, 751, 822, 0.46 , 1.91 , 0, 48a7b , Eugen , 3

4 822, 767, 831, 1.86 , 0.29 , 0, 48a7b , Eugen , 7

5 831, 824, 841, 0.25 , 0.32 , 0, 48a7b , Eugen , 8

6 841, 832, 841, 0.28 , 0.00 , 2, 48a7b , Eugen , 5

Listing 5.3: PIN representation in the new dataset.

At the end of this process, the number of rows in the final dataset was 20054.

Notice that one row corresponds to just one keypress, in fact, in the final dataset,

we look at data only as single keypresses and not as 5-digit PINs; the concept of

PIN is reintroduced later, during the final testing phase. Figure 5.5 shows the same

data, graphically.

0 1 2 3 4 5 6 7 8 9
Key

0

250

500

750

1000

1250

1500

1750

2000

S
a
m
p
le
s

Figure 5.5: Amount of samples for each key.

5.3. DATA LOGGING 29

The final step of the data collection process was to use the just mentioned CSV

dataset to extract and save all the needed images to disk using FFmpeg [31], so that

we could easily load it later for our deep learning models. However, we noticed that

there was no need for the data to be saved on disk first, as, by using OpenCV [6],

we could load the needed images in memory by extracting them directly from the

video source.

CHAPTER 6
Models and Experiments

In this chapter, we present the models and the different approaches explored during the

development of the attack. Here, we also show some of the practical challenges we had

to deal with before even starting with the training phase.

6.1 Base model

The aim of the model that we developed is to determine which button is being

pressed, given a sequence of images as input. Since we had to deal with both

sequences and images (or more simply, videos), the first design choice that came

to mind, was to use Convolutional Neural Networks (CNNs) [17], and Long Short-

Term Memory Cells (LSTM) [12]. The convolutional part would work as a feature

extractor for each frame of the sequence (e.g. detecting hands, fingers, keypad), while

the LSTM part would detect movement and patterns through time. Additionally, to

classify the result, we inserted a fully connected layer, followed by a 10-units output

layer with a softmax activation function, in order to have a probability distribution

over all the buttons. From now on, for simplicity, we will be referring to the CNN part

as the “feature extractor” of the model, while the LSTM layers, the fully connected

layers, and the output layer will be referred to as the “classifier” of the model. The

resulting model is known in the literature as Long-term Recurrent Convolutional

Network (LRCN) [11]. In Keras, such architecture can be implemented using the

TimeDistributed wrapper throughout all the layers of the feature extractor, which

causes the same convolutional filters to be applied to all the timesteps (or frames)

31

32 CHAPTER 6. MODELS AND EXPERIMENTS

of the input sequence. Alternatively, the naive (and highly inefficient) approach

would be to use different “flows” of convolutions for each frame, essentially creating

n independent feature extractors that possibly detect unrelated features among the

frames of the same sequence.

The feature extractor of the model has 4 convolutional layers (Conv2D in Keras)

each followed by a pooling layer (MaxPooling2D in Keras). Each convolutional

layer has a filter size of 3 × 3, while each pooling layer has a filter size of 2 × 2. The

number of filters in the convolutional layers doubles up at each level, starting from

32 filters in the first layer, ending up at 256 filters in the fourth (and last) layer.

The classifier has an LSTM layer with 128 units, followed by a fully connected layer

of the same size and an output layer of size 10, which is the number of classes we

are trying to classify. In the classifier, in the input of the fully connected layer,

we also added the timing information found in the dataset, however, this aspect

is discussed in §6.6. Other specific parameters of the model are discussed in §6.7,

while Figure 6.1 shows a global overview of the model.

6.2 Dataset Partitioning

Before starting with the experiments, we divided the data into three partitions:

training set, validation set, and test set. The percentages we chose for those

partitions are 70% for the training set, 20% for the validation set, and 10% for the

testing set. The basic approach to creating these sets would be to randomly assign

samples from the dataset, however, this would make the attack user-dependent.

In this context, a user-dependent attack is not realistic, as it would require the

attacker to collect prior data about the typing behavior of the victims (including

keypresses), and use that data to target the same victims for a future attack; this

is an extremely unlikely scenario because there is a high chance of the attacker

retrieving the PIN already during the data collection. From the point of view of the

neural network, a user-dependent attack would mean that the model only learns

the specific typing behaviors of the users, and therefore is able to correctly classify

the keypresses during validation and testing just because it knows how the specific

6.2. DATASET PARTITIONING 33

frame_sequence: InputLayer
input:

output:

[(?, 11, 250, 250, 1)]

[(?, 11, 250, 250, 1)]

time_distributed(conv2d): TimeDistributed(Conv2D)
input:

output:

(?, 11, 250, 250, 1)

(?, 11, 248, 248, 32)

time_distributed_1(max_pooling2d): TimeDistributed(MaxPooling2D)
input:

output:

(?, 11, 248, 248, 32)

(?, 11, 124, 124, 32)

time_distributed_2(conv2d_1): TimeDistributed(Conv2D)
input:

output:

(?, 11, 124, 124, 32)

(?, 11, 122, 122, 64)

time_distributed_3(max_pooling2d_1): TimeDistributed(MaxPooling2D)
input:

output:

(?, 11, 122, 122, 64)

(?, 11, 61, 61, 64)

time_distributed_4(conv2d_2): TimeDistributed(Conv2D)
input:

output:

(?, 11, 61, 61, 64)

(?, 11, 59, 59, 128)

time_distributed_5(max_pooling2d_2): TimeDistributed(MaxPooling2D)
input:

output:

(?, 11, 59, 59, 128)

(?, 11, 29, 29, 128)

time_distributed_6(conv2d_3): TimeDistributed(Conv2D)
input:

output:

(?, 11, 29, 29, 128)

(?, 11, 27, 27, 256)

time_distributed_7(max_pooling2d_3): TimeDistributed(MaxPooling2D)
input:

output:

(?, 11, 27, 27, 256)

(?, 11, 13, 13, 256)

time_distributed_8(flatten): TimeDistributed(Flatten)
input:

output:

(?, 11, 13, 13, 256)

(?, 11, 43264)

lstm: LSTM
input:

output:

(?, 11, 43264)

(?, 128)

concatenate: Concatenate
input:

output:

[(?, 128), (?, 2)]

(?, 130)

timestamps: InputLayer
input:

output:

[(?, 2)]

[(?, 2)]

dense: Dense
input:

output:

(?, 130)

(?, 128)

dense_1: Dense
input:

output:

(?, 128)

(?, 10)

Figure 6.1: Graphical summary of the base model.

34 CHAPTER 6. MODELS AND EXPERIMENTS

Table 6.1: Detailed amount of samples for each key with user-independent partitioning.

Key 0 1 2 3 4 5 6 7 8 9

Training 1377 1288 1402 1399 1426 1446 1438 1451 1455 1371

Validation 395 415 422 397 398 412 389 402 378 390

Testing 215 187 209 206 195 196 189 207 201 198

0 1 2 3 4 5 6 7 8 9
Key

0

250

500

750

1000

1250

1500

1750

2000

S
a
m

p
le

s

Training Set

Validation Set

Test Set

Figure 6.2: Amount of samples for each set and for each key with the user-independent

partitioning.

users type. What the attacker wants is to train the model once, possibly by himself,

and use it later on new victims, i.e., he wants the attack to be user-independent.

For the attack to be user-independent, we partitioned the dataset in such a way to

have samples from the same user only be assigned in one of the three sets; samples

from 28 users ended up in the training set; samples from 8 users ended up in the

validation set; the remaining 4 users ended up in the testing set. In this way, the

model will be evaluated on users (and typing behaviors) it has never seen during

training. Table 6.1 and Figure 6.2 show that the final distribution of the labels is

still balanced throughout all the sets, even with the user-independent partitioning.

6.3. PREPROCESSING 35

6.3 Preprocessing

Before providing the samples to the network, we apply a preprocessing pipeline;

preprocessing is usually used to standardize the input samples. Some common

preprocessing steps (in the computer vision context) are usually: cropping, rescal-

ing, normalizing, changing color. The idea is that by making all the samples as

structurally similar as possible, we reduce the amount of variation of the dataset;

by doing this we may not need to employ complex models and solutions, which is

desirable, as a simple and small solution usually generalizes better than a big and

complex one. The preprocessing pipeline we implemented has the following steps:

1. converting the image to grayscale, as we were more interested in the geometry

of the image rather than the colors;

2. normalizing the input so that all pixel values lie in [0, 1];

3. cropping the image by cutting off the irrelevant part of the picture. This was

easy to do as the camera had a fixed position and therefore never moved;

4. resizing the image; since the cropping step was already generating images

with the same size, this step could have been avoided, however, we wanted

the images to have squared shape, and therefore we resized them all to be

250 × 250 pixels.

6.4 Data Augmentation

To prevent the model from overfitting the data, we decided to implement a data

augmentation pipeline. Data augmentation is the practice of applying small random

graphical transformations to the input images of the training set, with the objective

of improving the generalization of the model. Data augmentation also serves as

way to virtually increase the number of available training samples; in fact by

slightly changing the input, we are essentially creating a new sample. The data

augmentation in this specific implementation is performed on-the-fly, i.e., no data is

36 CHAPTER 6. MODELS AND EXPERIMENTS

Figure 6.3: Effects of data augmentation. The original image is the one in the top-left

corner, all the others are augmented versions of it.

saved on disk, but transformations are applied before the sample is given as input to

the network. Possibly, thanks to the randomness in the graphical transformations,

the network might never see the same image twice throughout all the training

epochs.

In my configuration, data augmentation was set with the following parameters:

• rotation: for a maximum of 10° both clockwise and counterclockwise

• horizontal shift: for a maximum of 10% of the width;

• vertical shift: for a maximum of 10% of the height;

• zoom: between 0.9 and 1.1.

In Figure 6.3 the image in the top-left corner is the original sample, while all the

other images architecture augmented versions of it. Notice that the transformations

had to be relatively small to prevent the hands and/or the keypad from getting out

of bounds in the resulting image.

6.5. FRAMES PER SAMPLE 37

As we was dealing with sequences of images and not single frames, we had to

implement the data augmentation pipeline in a different way than the usual one.

When a sample is given to the pipeline, we first generate a seed number for the

operations that require randomness, after that, for each frame of the sequence,

since we fix the seed, we are able to apply the same exact augmentation that will

be applied to the other frames of the same sequence. When a new sample follows,

a new random seed is generated and the process repeats.

6.5 Frames per sample

Since the model requires all input samples to have the same length, the first task we

had to do was to decide which frames and how many of them should be kept for each

sample. The first attempt at setting the number of frames was done by following

what was already available in the dataset (see §5.3.2), i.e., the frame numbers of the

previous and following keypresses with respect to the target keypress. The initial

approach was exactly this: given a target keypress, keep all the frames between

the keyup event of the previous keypress, and the keydown event of the following

keypress (we will call this set of frames the full-neighborhood of the target keypress).

This approach, unfortunately, did not work well in practice, in fact, it turned out

to be very computationally expensive, to the point where it was infeasible with

the configuration reported in §6.7. The reason is that this way of equalizing the

samples is heavily influenced by the outliers of the dataset, i.e., even though the

average number of frames of the full-neighborhood per sample is 17, the sample

with the longest full-neighborhood had 291 frames, which meant that all samples

should have been extended to have exactly that number of frames.

To find a suitable number of frames, we had to perform a statistical analysis of the

dataset. As stated before, the average number of frames in the full-neighborhood is

17, however, this value too is influenced by the outliers, therefore we decided to only

keep those elements whose length of the full-neighborhood was within 3 standard

deviations from the mean.1 Figure 6.4 shows the distribution of the number of

1We only removed the outliers from the computation of the average number of frames; no data

38 CHAPTER 6. MODELS AND EXPERIMENTS

0 5 10 15 20 25
Number of frames between two consecutive keypresses

0

200

400

600

800

1000
O

cc
u
rr

e
n
ce

s

Figure 6.4: Distributions of the number of frames between the keyup event of the

previous keypress and the keydown event of the following keypress with

respect to the target keypress (after rejecting outliers). E.g., given the

trigraph “345” where “4” is the target keypress, we count the number of

frames between the keyup event of the key “3” and the keydown event of

the key “5”.

frames after rejecting the outliers; the average is now 12, while the maximum is 28.

We then decided to work with the new average value, which meant that, when

loaded, the samples would all have at most 12 frames each. However, since we still

wanted the target keypress to be in the center of the sequence, we decided to keep

only the 5 frames preceding the target keypress and the 5 frames succeeding it, for

a total of 11 frames per sample (including the target frame), which is close enough

to the new average. For example, assume that the target keypress is located at

frame number 10, assume now that the keyup of the previous keypress is located

at frame number 3, and that the keydown of the following keypress is located at

frame number 20, the just presented approach would only keep frames between

frame numbers 5 and 15 (included), as shown in Figure 6.5. Iwewill call this the

neighborhood (of size 5) of the target keypress.

was removed from the actual dataset.

6.5. FRAMES PER SAMPLE 39

3
4

5
6

7
8
9

10

11
12

13
14

15
16

17
18

19
20

target

Figure 6.5: The neighborhood of size 5 of the target keypress is highlighted in green.

White frames are too far away from the target frame and are therefore

discarded. Yellow frames mark the keyup event of the previous key (frame

number 3) and the down event of the following key (frame number 20).

After having decided the number of frames to keep, we thought about some alter-

native approaches on which frames to keep. One possible solution was to perform

subsampling, i.e., taking equally spaced frames throughout the full-neighborhood

(Figure 6.6). This does not change the final amount of frames, but the produced

sequence provides a different kind of perspective. Unfortunately, this approach is

also sensible to outliers, as samples with a long full-neighborhood would become

sequences of seemingly unrelated frames. This also highlights one of the hidden

advantages of keeping only frames that are near the target keypress: the distance

in time between two keypresses is irrelevant if we only look at a small neighborhood

of frames around the target.

Recall that, as seen in Listing 5.3, when the keypress refers to the first or the

last key of the PIN, there are no previous and following keypresses respectively.

This means that there might be samples where the target key is positioned at the

beginning or at the end of the frame sequence, or even that there are samples with

less than 11 frames. To prevent this from happening, we use black frames to extend

short sequences, therefore, if the target keypress does not have, for example, a

previous keypress, we add 5 black frames to fill the gap; if the previous keypress

exists, but it happens to be too “early” in time (i.e., there are less than 5 frames

between that keypress and the target keypress), then we add the needed amount of

40 CHAPTER 6. MODELS AND EXPERIMENTS

3
4

5
6

7
8
9

10

11
12

13
14

15
16

17
18

19
20

target

Figure 6.6: Keeping frames that are equally spaced throughout the sequence. Green

frames are kept, white are discarded.

3
4

5
6

7
8
9

10
11

12
13

target

14
15

Figure 6.7: Selected frames (green) and padded frames (black) of the considered video

sequence between subsequent keypresses.

black frames to fill the gap. This technique is shown in Figure 6.7.

Figure 6.8 shows how the subsampling gives no real advantage to the model,

instead, as expected, it only makes the task is harder in the first epochs. For this

reason, we decided to discard the subsampling option from the model.

6.6 Timing information

In §6.1, we introduced the concept of using the timing information as an added

feature before performing the final classification. Figure 6.1 also displays this in

one of the last layers where a concatenate layer is used to concatenate the 128

features of LSTM output with the 2 inputs coming from the timestamp before

feeding it to the fully connected layer. To clarify, if the target PIN is “12345” and

6.6. TIMING INFORMATION 41

0 5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

V
a
lid

a
ti

o
n
 A

cc
u
ra

cy

Subsampling

Neighborhood

Figure 6.8: Difference in validation accuracy between the subsampling approach and

the neighborhood approach (both with 11 frames in total).

the target key is “3”, then the timing inputs would be:

• the timing between the keyup event of the previous key (“2”) and the keydown

event of the target key (“3”), i.e., the value of the field named t1 in the

dataset;

• the timing between the keydown event of the target key (“3”) and the keydown

event of the following key (“4”), i.e., the value of the field named t2 in the

dataset.

Notice that, as explained in §6.5, there are samples that do not have a previous

or a following keypress. In these cases, the values of columns t1 or t2 are equal to 0,

which we used as placeholder value to indicate this phenomenon. we also evaluated

if and how much the inclusion of the timing info would affect the validation accuracy:

it turns out, as shown in Figure 6.9, that adding the timing info does not really

influence the accuracy of the model. However, because of compatibility reasons

with the already existing data structures, we decided to keep timing inputs, but in

42 CHAPTER 6. MODELS AND EXPERIMENTS

order to make it irrelevant for the predictions, we always use 0 as a value for both

inputs for all samples.

0 10 20 30 40 50 60
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
V

a
lid

a
ti

o
n
 A

cc
u
ra

cy

timing included

timing excluded

Figure 6.9: Difference in validation accuracy when including the timing information as

input.

6.7 Configuration and Environment

The model is trained using Stochastic Gradient Descent (SGD) as the optimizer,

while the chosen loss metric is the Categorical Cross Entropy, which works well

with the SoftMax activation function of the output layer. The batch size is set

to 16 samples, while the number of training epochs was generally set to different

values based on what we were experimenting, in any case, for most of the models

presented here the number of training epochs is 60, but the validation loss is used

as a criterion for checkpointing.

The hardware on which we trained this model is the following:

• CPU: Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz, with 8 cores and a cache

size of 20 MB;

• GPU: NVIDIA Tesla K20m, with 5 GB of DDR5 memory;

6.7. CONFIGURATION AND ENVIRONMENT 43

– NVIDIA driver: 418.87.01

– CUDA driver: 10.1

• RAM: 128 GiB

• DISK: 18 TiB

CHAPTER 7
Evaluation

In this chapter, we present the chosen model and we show its results during the testing

phase. First, we show some of the most common classification metrics, then we also

analyze some interesting patterns in the errors made by the model. In the first part of

the chapter we only analyze the performance on single keys, while in the second part,

we also evaluate the model on whole PINs.

7.1 Choosing the model

After trying different combination of approaches and different values for the hyper-

parameters, this is the configuration that generally produced the best performing

models:

• Data augmentation active;

• No timing included;

• No subsampling;

• SGD optimizer, and Categorical Cross Entropy as the loss metric;

• 60 epochs of training;

• User-independent dataset partitioning.

Figure 7.1 shows the performance of the model on the validation set; The best

model is the one with the smallest validation loss, i.e., the one that can be seen at

45

46 CHAPTER 7. EVALUATION

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

Train Accuracy
Validation Accuracy

0 10 20 30 40 50 60
Epochs

0.5

1.0

1.5

2.0

Lo
ss

Train Loss
Validation Loss

Figure 7.1: Validation and training performance comparison throughout the training

epochs. The vertical dashed gray line shows the epoch on which the model

performed best (i.e., lowest validation loss).

epoch 24 (highlighted with a dashed gray line). This is the model with which we

carried out the testing phase.

7.2 Evaluation on single keys

Table 7.1 displays the performance of the model in some of the typical metrics used

for classification tasks, while Figure 7.2 shows the normalized confusion matrix

obtained by our model. The confusion matrix clearly highlights a pattern in the

error distribution, in fact, one can notice that most of the prediction errors are not

randomly distributed but are usually close (physically) to the target key. To better

visualize this relationship, look at Figure 7.3, which displays in a different form the

distribution of the predictions for key “1”. Here we can immediately see how the

model, even if it predicts the wrong key, it almost always manages to guess the

7.3. EVALUATION ON PINS 47

Table 7.1: Classification report produced by the Scikit-learn library [23]. These results

refer to the test set and show different metrics for each class. The classes

correspond to the pressed buttons.

class precision recall f1-score support

0 0.59 0.69 0.64 215

1 0.63 0.79 0.70 187

2 0.47 0.58 0.52 209

3 0.70 0.65 0.67 206

4 0.65 0.56 0.60 195

5 0.51 0.51 0.51 196

6 0.57 0.48 0.52 189

7 0.70 0.67 0.68 207

8 0.50 0.43 0.46 201

9 0.66 0.56 0.60 198

accuracy 0.59 2003

macro avg 0.60 0.59 0.59 2003

weighted avg 0.60 0.59 0.59 2003

right area in which the target key has been pressed.

7.3 Evaluation on PINs

The previous section analyzed the performance of the model on single keys, however,

if we want to know how the model performs on PINs, some small changes need

to be applied. The model only accepts single keys, so there is no automatic way

to retrieve the PIN accuracy, therefore we need to develop the code for it. The

first step of the process is to generate the PINs: luckily, we already have real PINs

typed by the participants, so, to make this as realistic as possible, we can use the

48 CHAPTER 7. EVALUATION

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1

2
3

4
5

6
7

8
9

T
ru

e
 l
a
b

e
l

69% 7% 7% 3% 3% 1% 1% 5% 2% 1%

1% 79% 11% 0% 7% 1% 0% 0% 0% 1%

1% 7% 58% 10% 4% 15% 4% 1% 0% 0%

0% 2% 16% 65% 0% 2% 15% 0% 0% 0%

5% 8% 7% 4% 56% 7% 1% 10% 2% 1%

2% 3% 6% 5% 7% 51% 8% 3% 13% 4%

2% 2% 7% 5% 1% 11% 48% 1% 3% 21%

11% 4% 5% 1% 5% 2% 2% 67% 2% 0%

23% 8% 5% 0% 1% 6% 0% 9% 43% 3%

9% 2% 4% 1% 1% 3% 4% 1% 21% 56%
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.2: Normalized confusion matrix on the test set.

0.79 0.11 0.00

0.07 0.01 0.00

0.00 0.00 0.01

0.01

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.3: Distribution of the predictions for key “1”; most of the prediction errors

are made on buttons that are physically close to the target button.

7.3. EVALUATION ON PINS 49

real sequences.1 Now that we have a valid PIN, we feed the 5 keys to the network

(separately); the network will output, for each given key, a probability distribution

over the 10 labels, so we will now have, for each key, a list of 10 probabilities; we

can thus compute all the possible combinations of keypresses and their probability

as a whole for the given input. The result of this process is the full lists of all

possible 5-digit PINs and their probability with respect to the input; by sorting

this list by the probability value, we can lookup our original PIN and check at

which position it is stored By repeating this process for all the PINs in the test

set (400 PINs) we can evaluate how well the model performs. The main metric in

this context is surely the TOP-3 accuracy, i.e., how many PINs end up in TOP-3

positions of the sorted list. Usually, ATMs give customers only 3 attempts for the

PIN, therefore, metrics like TOP-5, or TOP-10 are not really relevant in this case.

The final result is as follows:

• TOP-1: 22%;

• TOP-2: 32%;

• TOP-3: 36%;

The results show that, on average, the model manages to put in the TOP-3

positions 1 PIN out of 3, which is a good result for a user-independent approach.

The same result is shown graphically in the Cumulative Distribution Function

graph (CDF) in Figure 7.4.

1The less realistic, but still valid, approach would be to build PINs by using random keys

typed by different users.

50 CHAPTER 7. EVALUATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Attempts

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
ec

ov
er

ed
 P

IN
s

Figure 7.4: CDF showing the percentage of the PINs cracked during the testing phase;

the model can to recover 36% of PINs in only 3 attempts.

CHAPTER 8
Conclusions and Future Work

This chapter presents the final remarks about the work done in my master thesis and

provides some previews of possible extensions of the attack for the future.

8.1 Overall Summary

In this work, we developed and tested a deep learning model that evaluates the

efficacy of a common and widespread countermeasure used against card-skimming

attacks. The model is able to retrieve a victim’s PIN just by looking at their covered

hand when typing it on the keypad, and it does so without requiring any prior

knowledge about the victim or their typing behavior. The trained model is in fact

user-independent, which is a huge advantage to the attackers, since it allows them

to collect the training data in a controlled environment (ATM replicas), and, after

training the model, to use it in real attacks (real ATMs).

The results, unfortunately, show that the “covered hand technique” is not that

effective when artificial intelligence is involved, in fact, the model manages to

retrieve, on average, 1 PIN out of 5 in only 1 attempt, and 1 PIN out of 3 in at

most 3 attempts. While users should still be covering their hand while typing, the

results reported in this work highlight the inadequacy of current authentication

methods regarding PIN and keypads. The more AI becomes widespread and easy

to use, the more it will be exploited by malicious actors for day to day attacks; it is

important, therefore, to be prepared when this will inevitably happen.

51

52 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Future Work

This work provides many ways in which it can be extended. First of all, as mentioned

in §5.1.2, the number of webcams set up in the ATM replica is three; the initial

idea of this attack was in fact to use videos coming from three different points of

view and to feed them to an ensemble of neural networks. In fact, for right-handed

people, the right camera, might be able to reach a higher accuracy score than the

central camera, and the inverse might be true for left-handed people, but, most

important of all, using predictions from all three cameras might improve the overall

accuracy of the model. Luckily, we do still have the videos collected by all three

cameras, but the neural networks have not been developed nor tested yet.

In my opinion, the main flaw of this model is the lack of data. Unfortunately, the

data collection was performed during the month of July 2020, during the COVID-19

pandemic, which meant that the number of people available for the experiments was

extremely low for a deep learning model. While the model still behaved well, we

have no way to tell if the model has reached its limit, or if this is just a baseline. If

possible, in the near future, we will try to collect more data from more participants;

hopefully, this will give us a way to test how powerful the model can be.

Moreover, while the model is user-independent, it is not keypad-independent, i.e.,

we do not know if and how well the attack would work when applied on a different

keypad other than the one we used for our experiments (Figure 5.1b). It would

be nice, as a future extension, to retrieve different keypads and test whether the

model still reaches the same accuracy level.

Lastly, as mentioned in Chapter 1, some ATMs are employing plastic shields

around the keypad to prevent hidden webcams and onlookers to learn the PINs. It

would be interesting to test the effectiveness of the different types of shields and

see how they compare to the model presented in this work.

Bibliography

[1] Michael Backes et al. “Acoustic Side-Channel Attacks on Printers.” In:

USENIX Security symposium. 2010, pp. 307–322 (cit. on p. 7).

[2] Kiran Balagani et al. “PILOT: Password and PIN information leakage from

obfuscated typing videos”. In: Journal of Computer Security 27.4 (2019),

pp. 405–425 (cit. on pp. 1, 9).

[3] Kiran S Balagani et al. “Silk-tv: Secret information leakage from keystroke

timing videos”. In: European Symposium on Research in Computer Security.

Springer. 2018, pp. 263–280 (cit. on pp. 1, 18).

[4] Davide Balzarotti, Marco Cova, and Giovanni Vigna. “Clearshot: Eavesdrop-

ping on keyboard input from video”. In: 2008 IEEE Symposium on Security

and Privacy (sp 2008). IEEE. 2008, pp. 170–183 (cit. on pp. 1, 8).

[5] BESTÅ Frame, black-brown, 23 5/8x15 3/4x25 1/4" - IKEA. url: https:

//www.ikea.com/us/en/p/besta-frame-black-brown-20245964/ (visited

on 08/19/2020) (cit. on p. 21).

[6] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools

(2000) (cit. on p. 29).

[7] Matteo Cardaioli et al. “Your PIN Sounds Good! On The Feasibility of PIN

Inference Through Audio Leakage”. In: arXiv preprint arXiv:1905.08742

(2019) (cit. on pp. 1, 9).

[8] CNN Padding | Master Data Science. 2018. url: http://datahacker.rs/

what-is-padding-cnn/ (visited on 09/04/2020) (cit. on pp. ix, 13).

53

https://www.ikea.com/us/en/p/besta-frame-black-brown-20245964/
https://www.ikea.com/us/en/p/besta-frame-black-brown-20245964/
http://datahacker.rs/what-is-padding-cnn/
http://datahacker.rs/what-is-padding-cnn/

54 Bibliography

[9] Alberto Compagno et al. “Don’t Skype & Type! Acoustic Eavesdropping in

Voice-Over-IP”. In: Proceedings of the 2017 ACM on Asia Conference on

Computer and Communications Security. 2017, pp. 703–715 (cit. on pp. 1, 8).

[10] Mauro Conti et al. “Can’t you hear me knocking: Identification of user

actions on android apps via traffic analysis”. In: Proceedings of the 5th ACM

Conference on Data and Application Security and Privacy. 2015, pp. 297–304

(cit. on p. 8).

[11] Jeffrey Donahue et al. “Long-term recurrent convolutional networks for visual

recognition and description”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2015, pp. 2625–2634 (cit. on p. 31).

[12] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to forget:

Continual prediction with LSTM”. In: (1999) (cit. on p. 31).

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:

//www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. ix, x, 12, 14).

[14] Paul C Kocher. “Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems”. In: Annual International Cryptology Conference.

Springer. 1996, pp. 104–113 (cit. on p. 7).

[15] Brian Krebs. Why I Always Tug on the ATM. Mar. 21, 2017. url: https:

//www.pinguard.com/atm-wincor-nixdorf/ (visited on 09/04/2020) (cit.

on pp. ix, 3, 4).

[16] Taekyoung Kwon and Jin Hong. “Analysis and improvement of a pin-entry

method resilient to shoulder-surfing and recording attacks”. In: Ieee transac-

tions on information forensics and security 10.2 (2014), pp. 278–292 (cit. on

p. 1).

[17] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech,

and time series”. In: The handbook of brain theory and neural networks 3361.10

(1995), p. 1995 (cit. on p. 31).

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.pinguard.com/atm-wincor-nixdorf/
https://www.pinguard.com/atm-wincor-nixdorf/

Bibliography 55

[18] Yann LeCun et al. “Gradient-based learning applied to document recognition”.

In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324 (cit. on pp. x, 16).

[19] Mun-Kyu Lee. “Security notions and advanced method for human shoulder-

surfing resistant PIN-entry”. In: IEEE Transactions on Information Forensics

and Security 9.4 (2014), pp. 695–708 (cit. on p. 1).

[20] Logitech C920 HD Pro Webcam. url: https://www.logitech.com/it-

it/product/hd-pro-webcam-c920?crid=34 (visited on 08/19/2020) (cit.

on p. 22).

[21] Matrix tastiera impermeabile industriale Custom tastierino numerico 4 x 4

tastiere: Amazon.it: Elettronica. url: https://www.amazon.it/tastiera-

impermeabile-industriale-tastierino-tastiere/dp/B01KHQ416K (vis-

ited on 08/19/2020) (cit. on p. 22).

[22] Keaton Mowery, Sarah Meiklejohn, and Stefan Savage. “Heat of the moment:

Characterizing the efficacy of thermal camera-based attacks”. In: Proceedings

of the 5th USENIX conference on Offensive technologies. 2011, pp. 6–6 (cit. on

pp. 8, 10).

[23] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal

of machine learning research 12.Oct (2011), pp. 2825–2830 (cit. on pp. xii,

47).

[24] Pooling — Dive into Deep Learning 0.14.3 documentation. url: https :

//d2l.ai/chapter_convolutional- neural- networks/pooling.html

(visited on 09/04/2020) (cit. on pp. x, 16).

[25] Diksha Shukla and Vir V Phoha. “Stealing passwords by observing hands

movement”. In: IEEE Transactions on Information Forensics and Security

14.12 (2019), pp. 3086–3101 (cit. on p. 1).

[26] Diksha Shukla et al. “Beware, your hands reveal your secrets!” In: Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications

Security. 2014, pp. 904–917 (cit. on p. 8).

https://www.logitech.com/it-it/product/hd-pro-webcam-c920?crid=34
https://www.logitech.com/it-it/product/hd-pro-webcam-c920?crid=34
https://www.amazon.it/tastiera-impermeabile-industriale-tastierino-tastiere/dp/B01KHQ416K
https://www.amazon.it/tastiera-impermeabile-industriale-tastierino-tastiere/dp/B01KHQ416K
https://d2l.ai/chapter_convolutional-neural-networks/pooling.html
https://d2l.ai/chapter_convolutional-neural-networks/pooling.html

56 Bibliography

[27] Dawn Xiaodong Song, David A Wagner, and Xuqing Tian. “Timing analysis

of keystrokes and timing attacks on ssh.” In: USENIX Security Symposium.

Vol. 2001. 2001 (cit. on p. 7).

[28] Jost Tobias Springenberg et al. “Striving for simplicity: The all convolutional

net”. In: arXiv preprint arXiv:1412.6806 (2014) (cit. on p. 16).

[29] Jingchao Sun et al. “VISIBLE: Video-Assisted Keystroke Inference from

Tablet Backside Motion.” In: NDSS. 2016 (cit. on p. 8).

[30] Furkan Tari, A Ant Ozok, and Stephen H Holden. “A comparison of per-

ceived and real shoulder-surfing risks between alphanumeric and graphical

passwords”. In: Proceedings of the second symposium on Usable privacy and

security. 2006, pp. 56–66 (cit. on p. 1).

[31] Suramya Tomar. “Converting video formats with FFmpeg”. In: Linux Journal

2006.146 (2006), p. 10 (cit. on p. 29).

[32] Wincor-Nixdorf ATM PINGuards | PINGuards for Wincor Nixdorf ATM

machines | PINGuard. url: https://www.pinguard.com/atm- wincor-

nixdorf/ (visited on 09/04/2020) (cit. on pp. ix, 2).

https://www.pinguard.com/atm-wincor-nixdorf/
https://www.pinguard.com/atm-wincor-nixdorf/

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Card Skimming Attacks

	2 Related Work
	2.1 Side-Channel Attacks
	2.2 PIN and PIN pads attacks.

	3 Background Knowledge
	3.1 CNN - Convolutional Neural Networks
	3.1.1 Typical CNN Architecture

	4 System Model
	4.1 System Model

	5 Data Collection
	5.1 Experimental Setup
	5.1.1 ATM Replica and Keypad
	5.1.2 Webcams

	5.2 Experiment Process
	5.2.1 Error Handling

	5.3 Data Logging
	5.3.1 Data Cleaning
	5.3.2 Preparing the dataset

	6 Models and Experiments
	6.1 Base model
	6.2 Dataset Partitioning
	6.3 Preprocessing
	6.4 Data Augmentation
	6.5 Frames per sample
	6.6 Timing information
	6.7 Configuration and Environment

	7 Evaluation
	7.1 Choosing the model
	7.2 Evaluation on single keys
	7.3 Evaluation on PINs

	8 Conclusions and Future Work
	8.1 Overall Summary
	8.2 Future Work

	Bibliography

